Nonparametric confidence bands in deconvolution density estimation

نویسندگان

  • Nicolai Bissantz
  • Lutz Dümbgen
  • Hajo Holzmann
  • Axel Munk
چکیده

Uniform confidence bands for densities f via nonparametric kernel estimates were first constructed by Bickel and Rosenblatt [Ann. Statist. 1, 1071–1095]. In this paper this is extended to confidence bands in the deconvolution problem g = f ∗ ψ for an ordinary smooth error density ψ. Under certain regularity conditions, we obtain asymptotic uniform confidence bands based on the asymptotic distribution of the maximal deviation (L∞-distance) between a deconvolution kernel estimator f̂ and f . Further consistency of the simple nonparametric bootstrap is proved. For our theoretical developments the bias is simply corrected by choosing an undersmoothing bandwidth. For practical purposes we propose a new data-driven bandwidth selector based on heuristic arguments, which aims Adress for correspondence: Dr. Nicolai Bissantz, Faculty of Mathematics, Ruhr-University Bochum, Universitätsstraße 150, Mathematik III NA 3/70, D-44780 Bochum, Germany, email: [email protected], Fon: +49/234/32–14559, Fax: +49/234/32–23291

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Deconvolution in nonparametric statistics

In this tutorial paper we give an overview of deconvolution problems in nonparametric statistics. First, we consider the problem of density estimation given a contaminated sample. We illustrate that the classical Rosenblatt-Parzen kernel density estimator is unable to capture the full shape of the density while the presented method experiences almost no problems. Second, we use the previous est...

متن کامل

Parametrically assisted nonparametric estimation of a density in the deconvolution problem

Nonparametric estimation of a density from contaminated data is a difficult problem, for which convergence rates are notoriously slow. We introduce parametrically assisted nonparametric estimators which can dramatically improve on performance of standard nonparametric estimators when the assumed model is close to the true density, without degrading much the quality of purely nonparametric estim...

متن کامل

Sequential Fixed-width Confidence Bands for Kernel Regression Estimation

We consider a random design model based on independent and identically distributed (iid) pairs of observations (Xi, Yi), where the regression function m(x) is given by m(x) = E(Yi|Xi = x) with one independent variable. In a nonparametric setting the aim is to produce a reasonable approximation to the unknown function m(x) when we have no precise information about the form of the true density, f...

متن کامل

A Direct Approach to Inference in Nonparametric and Semiparametric Quantile Regression Models

This paper makes two main contributions. First, we construct “density-free” confidence intervals and confidence bands for conditional quantiles in nonparametric and semiparametric quantile regression models. They are based on pairs of symmetrized k-NN quantile estimators at two appropriately chosen quantile levels. In contrast to Wald-type confidence intervals or bands based on the asymptotic d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007